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This and the next lectures are about Verilog HDL, which, together with another 
language VHDL, are the most popular hardware languages used in industry.

Verilog is only a tool; this course is about digital electronics.  Therefore, I will NOT be 
going through Verilog as in a programming course - it would have been extremely 
boring for both you and me if I did.  Instead, you will learn about Verilog through 
examples. I will then point out various language features along the way.  What it 
means is that the treatment of Verilog is NOT going to be systematic – there will be 
lots of features you won’t know about Verilog.  However, you will learn enough to 
specify and design reasonably sophisticated digital circuits, and you should gain 
enough confidence to learn the rest by yourself.

There are many useful online resources available on details of Verilog syntax etc..  
Look it up as you need to and you will learn how to design digital circuit using 
Verilog through designing real circuits.

The problem sheets are mostly about circuits and concepts, with occasional Verilog 
exercises.  You will be doing lots of Verilog coding during the four weeks of Lab 
Experiment in the second half of the term.
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Here is a list of lecture objectives. They are provided for you to reflect on 
what you are supposed to learn, rather than an introduction to this lecture.  
I want, by the end of this lecture, to give you some idea about the basic 
structure and syntax of Verilog.  I want to convince you that schematic 
capture is NOT a good way to design digital circuits.  Finally, I want you to 
appreciate how to use Verilog to specify a piece of hardware at different 
levels of abstraction.
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You are very familiar with schematic capture.   However modern digital 
design methods in general DO NOT use schematics.  Instead an engineer 
would specify the design requirement or the algorithm to be implemented in 
some form of computer language specially designed to describe hardware.  
These are called “Hardware Description Languages” (HDLs).

The most important advantages of HDL as a means of specifying your digital 
design are: 1) You can make the design take on parameters (such as number 
of bits in an adder); 2) it is much easier to use compilation and synthesis 
tools with a text file than with schematic; 3) it is very difficult to express an 
algorithm in diagram form, but it is very easy with a computer language; 4)  
you can use various datapath operators such as +, * etc.; 5) you can easily 
edit, store and transmit a text file, and much hardware with a schematic 
diagram.

For digital designs, schematic is NOT an option. Always use HDL.  In this 
lecture, I will demonstrate to you why with an example.
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I have chosen to use Verilog HDL as the hardware description language for this 
module.  Verilog is very similar to the C language, which you should already know 
from last year.  However, you must always remember that YOU ARE USING IT TO 
DESCRIBE HARDWARE AND NOT AS A COMPUTER PROGRAMME.

You can use Verilog to describe your digital hardware in three different level of 
abstraction:
1) Behavioural Level – you only describe how the hardware should behave without 
ANY reference to digital hardware.  
2) Register-Transfer-Level (RTL) – Here the description assumes the existence of 
registers and these are clocked by a clock signal.  Therefore digital data is 
transferred from one register to the next on successive clock cycles.  Timing (in 
terms of clock cycles) is therefore explicitly defined in the Verilog code.  This is the 
level of design we use most frequently in this course.
3) Gate Level – this is the lowest level description where each gate and its 
interconnection are explicitly specified.  
Verilog is not only a specification language which tells the CAD system what 
hardware is suppose to do, it also includes a complete simulation environment.  A 
Verilog compiler does more than mapping your code to hardware, it also can 
simulate (or execute) your design to predict the behaviour of your circuit.  It is the 
predominant language used for chip design.
You will learn Verilog through examples and exercises, not through lecture.  
However, I will spend just two lectures to cover the basics of Verilog.  
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This is a Verilog module that specifies a 2-to-1 multiplexer.  It is rather similar 
to a C function (except for the module keyword).  

It is important to remember the basic structure of a Verilog module.  There is 
a module name: mux2to1.  There is a list of interface ports: 3 inputs a, b and 
sel, and 2 outputs out and outbar.  Always use meaningful names for both 
module name and variable names.

You must specify which port is input and which port is output, similar to the 
data type declaration in a C programme.

Finally, the 2-to-1 multiplexing function is specified in the assign statement 
with a construct that is found in C.  This is a behavioural description of the 
multiplexer – no gates are involved.

The last statement specifies the relationship between out and outbar.  It 
is important to remember that Verilog describes HARDWARE not instruction 
code.  The two assign statements specify hardware that “execute” or perform 
the two hardware functions in parallel.  Therefore their order does not 
matter.
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Continuous assignment specifies combinational circuits – output is continuously 
reflecting the operations applied to the input, just like hardware.
Remember that unlike a programming language, the two continuous assignment 
statements here ARE specifying hardware in PARALLEL, not in series.
Here we also see the conditional statement that is found in C.  This maps perfectly 
to the function of a 2-to-1 multiplexer in hardware and is widely used in Verilog.
Furthermore, there are many other Boolean and arithmetic operators defined in 
Verilog (as in C). Here is a quick summary of all the Verilog operators (used in an 
expression).  
(What is  “reduction and &”?  I want you to find this yourself online.)
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While the previous Verilog code for the 2-to-1 mux only specifies “behaviour”, here 
is one that specifies a gate implementation of the same circuit.  Three types of gates 
are used: and, or and not gates.  There are internal nets (declared as wire) which 
must also be declared and are used to connect gates together.

Keywords such as and, or and xor are special – they specify actual logic gates.  They 
are also special in that the number of inputs to the and-gate can be 2, 3, 4, ….. Any 
length!

Note that this module uses TWO AND gates, and they have different names: a1 and 
a2.  These are TWO separate instances of the AND gate.  In software, “calling” a 
function simple execute the same piece of programme code.   Here the two 
statements ”and a1 (out1, …” and “and a2 (out2 …” produce two separate piece of 
hardware.  We say that each line is “instantiating” an AND gate.

Wiring up the gates is through the use of ports and wires, and depends on the 
positions of these “nets”.  For example, out1 is the output net of the AND gate a1, 
and it is connected to the input of the OR gate itby virtual of its location in the gate 
port list.
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So far we have used Verilog in very hardware specific way.  “assign” and using gate 
specification are special to Verilog.  You do not find these in C.

Here is something that is more like C – and it is called “procedural assignment”.  
Typically we use something called “always” block to specify a “procedure”, i.e. a 
collection of sequential statements which are sandwiched between the begin-end 
construct.

The always block needs a sensitivity list – a list of signals which, if ANY of these 
signals changes, the always block will be invoked.  You may read this block as:

“always at any changes in nets a, b or sel, do the bits between begin and end”.
Actually, if you are defining a combinational circuit module, an even better way to 
define the always block is to use:

…..  always   @ *  ....    // always at any change with any input signal

Inside the begin-end block, you are allowed to use C-like statements. In this case, 
we use the if-else statement.  All statements inside the begin-end block are 
executed sequentially.
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Note that Verilog keyword reg does not implies that there is a register created in the 
hardware.  It is much more like declaring a variable that holds a value.  It is a rule in 
Verilog that if you perform an assignment to a variable INSIDE an always block, that 
variable MUST be declared reg, and NOT a net (wire).  This is one of the few 
peculiarities of Verilog that can be confusing to students. 
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This slide shows how the procedural statement is mapped to the basic MUX 
circuit.  The continuous assignment statement corresponds to the NOT gate.
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This is yet another way to specify the MUX circuit.  It is still a procedural assignment 
with the always block.  However, we replace the if-else statement with a “case”
statement.  The case variable is sel.  Since sel is a 1-bit signal (or net), it can only 
take on 0 or 1.

Note that the various case values can be expressed in different number formats as 
shown in the slide.  For example, consider 2’b10.  The 2 is the number of bits in this 
number. ‘b means it is specified in binary format.  The value of this number is 10 in 
binary.
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This slide demonstrates why language specification of hardware is so much better than 
schematic diagram.  By simply declaring the signals as a multi-bit bus (8 bits [7:0]), we 
change this module to one that specifies 8 separate 2-to-1 multiplexers. 

Another useful way to specify a bus is using the concatenation operator:  { …. } as shown 
above.

The concatenation operator is particularly useful in converting digital signals from one 
word length (i.e. number of bits in a word) to another.  For example, to convert an 8-bit 
unsigned number a[7:0] to a 13-bit unsigned number b[12:0], you can simple do this:

assign   b[12:0] = {5’b0, a[7:0]};
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Here is a simple example: the design of a 4-bit hex code to 7 segment decoder.    You 
can express the function of this 7-segment decoder in three forms: 1) as a truth 
table (note that the segments are low active); 2) as 7 separate K-maps (shown here 
is for out[6] segment only); 3) as Boolean equations.
This is probably the last time you see K-maps.  In practical digital design, you would 
rely heavily on CAD tools.  In which case, logic simplifications are done for you 
automatically – you never need to use K-maps to do Boolean simplification 
manually!
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Here is a tedious implementation in the form of schematic diagram of the 7 segment 
decoder as interconnected gates.  Very hard to do and very prone to errors.



15

One could take a group of gates and specify the gates in Verilog gate primitives such 
as and, or etc.  Still very tedious.  Here is the implementation for the out[6] output.
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Instead of specifying each gate separately, here is using continuous assignment 
statement, mapping the Boolean equation direction to a single Verilog statement.  
This is better.



17

Here is the complete specification of the hex_to_7seg module using continuous
assignment statements.  It shows how one should write Verilog code with good 
comments and clear documentation of input and output ports.
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Finally the 4th method is the best.  We use the case construct to specify the 
behaviour of the decoder.  Here one directly maps the truth table to the case
statement – easy and elegant.

Instead of using:     always @ (in), you could also use always @*
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How is a Verilog description of a hardware module turned into FPGA configuration?  
This flow diagram shows the various steps taken inside the Quartus Prime CAD 
system. 
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